11,912 research outputs found

    Separation probabilities for products of permutations

    Get PDF
    We study the mixing properties of permutations obtained as a product of two uniformly random permutations of fixed cycle types. For instance, we give an exact formula for the probability that elements 1,2,...,k1,2,...,k are in distinct cycles of the random permutation of {1,2,...,n}\{1,2,...,n\} obtained as product of two uniformly random nn-cycles

    Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays

    Full text link
    Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at f=1f=1yr−1^{-1} drops from 1.3×10−151.3\times10^{-15} to 4×10−164\times10^{-16}. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter

    The synchrotron foreground and CMB temperature-polarization cross correlation power spectrum from the first year WMAP data

    Full text link
    We analyse the temperature-polarization cross-correlation in the Galactic synchrotron template that we have recently developed, and between the template and CMB temperature maps derived from WMAP data. Since the polarized synchrotron template itself uses WMAP data, we can estimate residual synchrotron contamination in the CMB Câ„“TEC_\ell^{TE} angular spectrum. While C2TEC_2^{TE} appears to be contamined by synchrotron, no evidence for contamination is found in the multipole range which is most relevant for the fit of the cosmological optical depth.Comment: Accepted for pubblication on MNRAS Lette

    A Search for the Most Massive Galaxies. II. Structure, Environment and Formation

    Get PDF
    We study a sample of 43 early-type galaxies, selected from the SDSS because they appeared to have velocity dispersion > 350 km/s. High-resolution photometry in the SDSS i passband using HRC-ACS on board the HST shows that just less than half of the sample is made up of superpositions of two or three galaxies, so the reported velocity dispersion is incorrect. The other half of the sample is made up of single objects with genuinely large velocity dispersions. None of these objects has sigma larger than 426 +- 30 km/s. These objects define rather different relations than the bulk of the early-type galaxy population: for their luminosities, they are the smallest, most massive and densest galaxies in the Universe. Although the slopes of the scaling relations they define are rather different from those of the bulk of the population, they lie approximately parallel to those of the bulk "at fixed sigma". These objects appear to be of two distinct types: the less luminous (M_r>-23) objects are rather flattened and extremely dense for their luminosities -- their properties suggest some amount of rotational support and merger histories with abnormally large amounts of gaseous dissipation. The more luminous objects (M_r<-23) tend to be round and to lie in or at the centers of clusters. Their properties are consistent with the hypothesis that they are BCGs. Models in which BCGs form from predominantly radial mergers having little angular momentum predict that they should be prolate. If viewed along the major axis, such objects would appear to have abnormally large sigma for their sizes, and to be abnormally round for their luminosities. This is true of the objects in our sample once we account for the fact that the most luminous galaxies (M_r<-23.5), and BCGs, become slightly less round with increasing luminosity.Comment: 21 pages, 19 figures, accepted for publication in MNRA

    The Stellar Mass Fundamental Plane: The virial relation and a very thin plane for slow-rotators

    Full text link
    Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius ReR_e, enclosed surface brightness IeI_e and velocity dispersion σe\sigma_e. Since IeI_e and σe\sigma_e are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which IeI_e and σe\sigma_e can be used to estimate sizes ReR_e. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in ReR_e is ∼16%\sim 16\%, of which only ∼9%\sim 9\% is intrinsic. Removing galaxies with M∗<1011M⊙M_*<10^{11}M_\odot further reduces the observed scatter to ∼13%\sim 13\% (∼4%\sim 4\% intrinsic). The observed scatter increases to the ∼25%\sim 25\% usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5%5\% orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that IeI_e and σe\sigma_e are nearly independent, whereas the Re−IeR_e-I_e and Re−σeR_e-\sigma_e correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted'. If we multiply IeI_e by the global stellar mass-to-light ratio M∗/LM_*/L and we account for non-homology across the population by using S\'ersic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M∗/LM_*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.Comment: 13 pages, 9 figures, 3 tables, accepted for publication in MNRA

    The ages, metallicities and star formation histories of early-type galaxies in SDSS

    Get PDF
    We use the spectra of ~ 22,000 early-type galaxies, selected from the Sloan Digital Sky Survey, to infer the ages, metallicities and star formation histories of these galaxies. We find clear evidence of "downsizing", i.e. galaxies with larger velocity dispersion have older stellar populations. In particular, most early-type galaxies with velocity dispersion exceeding 200 km s-1 formed more than 90% of their current stellar mass at redshift z > 2.5. Therefore, star formation was suppressed around this redshift. We also show that chemical enrichment was rapid, lasting 1-2 Gyr and find evidence that [Fe/H] is sub-solar. We study the robustness of these results by comparing three different approaches: using (i) Lick absorption line indices; (ii) fitting a single-burst stellar population model to the whole spectrum (lines+continuum); and (iii) reconstructing the star formation and metallicity histories in multiple age-bins, providing a method to measure mass-weighted ages and metallicities. We find good agreement between the luminosity-weighted ages and metallicities computed with these three methods.Comment: Submitted to Ap

    Allocation of risk capital in a cost cooperative game induced by a modified expected shortfall

    Get PDF
    The standard theory of coherent risk measures fails to consider individual institutions as part of a system which might itself experience instability and spread new sources of risk to the market participants. This paper fills this gap and proposes a cooperative market game where agents and institutions play the same role. We take into account a multiple institutions framework where some institutions jointly experience distress, and evaluate their individual and collective impact on the remaining institutions in the market. To carry out the analysis, we define a new risk measure (SCoES) which is a generalization of the Expected Shortfall of and we characterize the riskiness profile as the outcome of a cost cooperative game played by institutions in distress. Each institution’s marginal contribution to the spread of riskiness towards the safe institutions in then evaluated by calculating suitable solution concepts of the game such as the Banzhaf–Coleman and the Shapley–Shubik values. This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Operational Research Society on 16/12/2019, available online: http://www.tandfonline.com/10.1080/01605682.2019.168695

    PC1643+4631A,B: The Lyman-Alpha Forest at the Edge of Coherence

    Full text link
    This is the first measurement and detection of coherence in the intergalactic medium (IGM) at substantially high redshift (z~3.8) and on large physical scales (~2.5 h^-1 Mpc). We perform the measurement by presenting new observations from Keck LRIS of the high redshift quasar pair PC 1643+4631A, B and their Ly-alpha absorber coincidences. This experiment extends multiple sightline quasar absorber studies to higher redshift, higher opacity, larger transverse separation, and into a regime where coherence across the IGM becomes weak and difficult to detect. We fit 222 discrete Ly-alpha absorbers to sightline A and 211 to sightline B. Relative to a Monte Carlo pairing test (using symmetric, nearest neighbor matching) the data exhibit a 4sigma excess of pairs at low velocity splitting (<150 km/s), thus detecting coherence on transverse scales of ~2.5 h^-1 Mpc. We use spectra extracted from an SPH simulation to analyze symmetric pair matching, transmission distributions as a function of redshift and compute zero-lag cross-correlations to compare with the quasar pair data. The simulations agree with the data with the same strength (~4sigma) at similarly low velocity splitting above random chance pairings. In cross-correlation tests, the simulations agree when the mean flux (as a function of redshift) is assumed to follow the prescription given by Kirkman et al. (2005). While the detection of flux correlation (measured through coincident absorbers and cross-correlation amplitude) is only marginally significant, the agreement between data and simulations is encouraging for future work in which even better quality data will provide the best insight into the overarching structure of the IGM and its understanding as shown by SPH simulations.Comment: 15 pages, 11 figures; accepted for publication in Astronomical Journa
    • …
    corecore